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Objectives

Our goal is to tackle the reward engineering problem for reinforcement learning (RL) such that

any learned behavior is safe and interpretable. To this end, we propose the use of symbolic

automata as a theoretically sound and practical framework to encode tasks for reinforcement

learning agents.

Our main contributions are:

A sound framework to design reward functions that ensures maximal probabilistic

satisfaction of a given task.

A symbolic potential function that uses spatial information in the symbolic automaton to

speed up learning.
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Figure 1. Overview of specification guided reinforcement learning.

Reinforcement learning (RL) is a paradigm where an agent learns a controller by repeatedly

interacting with an environment via a reward feedback.

A good reward function must ensure correctness of any learned behavior.
Rewarding undesirable behavior can lead to unsafe consequences!

Conservative (or sparse) rewarding strategies can lead to slow learning and poor convergence.

Symbolic Automata as Tasks

We propose a novel approach to encode a finite sequence of tasks using symbolic

automata [1].

They can encode history-dependent goals along with rich quantitative information about the

overall objective.

There exists well-defined algorithms to encode Temporal Logic specifications as symbolic

automata [2].
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Figure 2. This symbolic automaton models the reach-avoid task ϕ = F ϕA ∧ G ¬ϕB where

ϕA = (7 ≤ x ≤ 8) ∧ (7 ≤ y ≤ 8) denotes the region A, and ϕB = (3 ≤ x ≤ 5) ∧ (3 ≤ y ≤ 5) denotes the region B.

Product Markov Decision Process

Given an MDP M = (S, sinit, A, P ) and a symbolic automaton A = (X, Q, qinit, F, ∆, δ) — where

F is the set of final states — we define a product MDP, P = M ⊗ A.
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Figure 3. The (implicitly constructed) product of a simple MDP defined on the number line Z and a symbolic

automaton encoding a task on the MDP. R(·, ·) is the sparse reward function for the product.

Symbolic Potential Functions

To better inform the RL agent on “good” paths in the MDP that satisfy the task at hand, we

define a shaped reward function

R̂((s, q), (s′, q′)) = R((s, q), (s′, q′)) + Φ(s, q) − Φ(s′, q′),
where Φ(s, q) is a symbolic potential function defined on the product MDP, P .
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Note. The potential function only requires the current state of the system and A to generate a

distance, i.e., it is model-free!

Experimental Results

We compare our proposed framework against some state-of-the-art methods with a similar prob-

lem statement, and significantly outperform them as the problem and tasks scale up.
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Figure 4. The above maps correspond to the environments where we evaluate each specification. Here, the ?
corresponds to the initial position of the RL agent, and the gray blocks correspond to obstacles or walls.
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Figure 5. The above graphs plot the probability of a learned policy satisfying the given specification against the

number of training epochs for each method.

Conclusion and Future work

We present a RL framework with theoretical guarantees and the potential to scale up for

complex tasks in large systems.

We compare our method with some state-of-the-art methods proposed in literature.

For more details, please refer to our preprint [3].

In future works, we hope to expand our theoretical guarantees to continuous space (state space

and action space) systems, and generalize the framework to time-dependent tasks using timed

automata abstractions.
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