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ABSTRACT
In this work we present a new method for shaping reward func-
tions to train reinforcement learning agents using signal temporal
logic (STL) formulas. The proposed approach uses the robustness
metric of partial signal traces against STL specifications to generate
locally shaped rewards, doing this in a manner that is agnostic of
the learning algorithm used by the reinforcement learning agent.
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• Computing methodologies → Reinforcement learning; •
Theory of computation → Modal and temporal logics;
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1 INTRODUCTION
Recent advancements have shown that reinforcement learning (RL)
combined with deep learning can solve highly complex problems,
from maximizing high scores in Atari games to learning gait in
simulated robots [9, 10, 12]. The ability of deep learning so approx-
imate highly non-linear functions has enabled deep reinforcement
learning controllers to optimize policies that maximize rewards
using just sensory input, like joint/actuator states in robot sim-
ulations. An important problem to address when designing and
training reinforcement learning agents is reward shaping[5, 13]. Re-
inforcement learning agents learn policies by iteratively acting on
and observing their environment, and for each step performed, they
receive a reward, usually through a hand-crafted reward functions.
Reward shaping refers to the design of these reward functions.

Reward functions are a way to incorporate domain knowledge
in training reinforcement learning agents, and are especially im-
portant in model-free learning methods like Q-Learning, DQN, and
various other recently developed deep RL models [5, 10]. Thus,
reward shaping is an important aspect of reinforcement learning
as poorly designed reward functions can lead to poor convergence
of the policy. Moreover, in the case of safety critical systems, the
agent can learn a policy that performs unsafe or unrealistic actions,
even though it maximizes the expected total reward [6].
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Meanwhile, research on safety and verification of cyber-physical
systems (CPS) has extensively used Temporal Logics to define safety
specification on the system. Specifically, Signal Temporal Logic
(STL) has been used to define temporal properties of signals gener-
ated by cyber-physical systems in an expressive manner. Moreover,
the quantitative semantics of STL allow us to detect how robustly
a signal satisfies a given property, that is, we can calculate how
robust a signal is to perturbation against a given STL formula [4].

Our work borrows from the ideas used by the CPS community
and leverages it to define reward functions for reinforcement learn-
ing system similar to ideas like [1, 8]. Specifically, we use STL
specifications defined for an agents learning environment to com-
pute locally shaped reward functions. We do this by computing the
robustness of partial signal traces generated by the RL agent acting
on an environment and perform the learning step in the RL agent
in a delayed manner. Our objective is to provide a framework by
which reward functions can be specified in an expressive manner
using STL formulas, and use these reward functions regardless of
the architecture of the reinforcement learning agent.

2 STRUCTURED REWARDING
When monitoring signals for satisfaction of STL specifications,
typically there are two ways to do it:
• The more common method is where to let the system run

and reach a terminal state, and compute the robustness of
the complete signal [3, 4, 11]. This is similar to Monte Carlo
methods, and provides the most accurate way to compute
how robust a signal is to perturbation.
• The other method is to compute the online robustness metric.

This is an approximation as information in the future is not
available to compute the STL satisfaction for future temporal
operators like Always , Eventually and Until [2, 7].

There are disadvantages in using either notion of robustness in
the context of reward shaping for RL: Using the classical robust-
ness metric requires us to wait for the training episode to end to
calculate rewards, while using the online robustness metric gives
rise to rewards that accommodate an arbitrarily long history of
the learning episode. The latter is especially incompatible with RL
frameworks such as N-step learning [9, 13].

Definition 2.1 (Partial Signal). Given a trajectory of a system x, a
partial signal, x[i : j], is defined by the slice of the trajectory from
the ith sample to the jth sample.

To generate a partial signal, we define a buffer that stores the
transitions experienced by the RL agent and use the stored states
to generate a partial signal when the buffer is full. The maximum
size of the buffer is set as an hyper-parameter, τ , for training the
RL agent.
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Definition 2.2 (Robust Satisfaction Function). The robust satisfac-
tion function is a function ρ̃ that maps a STL property φ, a partial
signal x[. . . ], and a sample step n ∈ N to a real number in R ⊆ R.

The robust satisfaction function computes the degree to which a
signal is robust to perturbation from a given time step. This means
that a signal with a large positive valued robust satisfaction metric
satisfies a formulaφ better than one with a lower robust satisfaction
value. Thus, we can define the reward function for a specific sample
as a function of the robust satisfaction values at each point in the
signal using the following equation:

R[i] = ρ̃(φ, x[i : τ ]) (1)
where, τ is the length of the partial signal and φ is the STL specifi-
cation defined on the system.

By doing so, we encode the local satisfaction of an STL prop-
erty into the reward function for an RL agent, where each reward
expressively holds information about satisfaction in future states.

3 RESULTS
To evaluate the new framework, we train Double DQN agents to
solve the cart-pole problem, using traditional reward functions for
one set and STL reward functions for the rest. In the case of the
vanilla rewarding function, we provide the agent with a reward
of +1 for every time-step it successfully balances the pole, i.e.,
θ ∈ [−5◦, 5◦]. For the structured reward function, we define the
STL property φ that we want the agent to satisfy as

φ = G
(
F (| Ûx | < 0.01) ∧ (|θ | < 2◦

) ∧ (|x | < 0.5)
)

where Ûx is the velocity of the cart, x is the displacement of the
cart from the center of the table, and θ is the angle of the inverted
pendulum.

In Figure 1, we can see that the Double DQN agent trained using
the STL-based reward function improves the duration for which
the pole is balanced (max of 500 time-steps), while continuing to
improve the total reward obtained. This rewarding strategy can be
extended just as easily to actor-critic models for continuous control
systems, allowing us to define STL properties on humanoid robots,
and other safety-critical systems.
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Figure 1: Double DQN training data for cart-pole problem
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