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INTRODUCTION

e Reinforcement Learning incorporates a class of algorithms that in-
volves training an agent to learn a controller (or policy) by iteratively
acting on and observing an environment.

e Each action performed by the agent on the environment 1s augmented
with a reward associated with the transition 1n states given the action.
Thus, the agent attempts to maximize the total expected reward.

e The reward 1s computed from a reward function, and a well designed
reward function 1s critical for training an RL agent that completes
a given task efficiently. The problem of designing a good reward
function is known as reward shaping.

Promise of (Deep) Reinforcement Learning

e Deep Reinforcement Learning involves use general function approx-
imation techniques (specifically Deep Neural Networks) to learn
policies.

e The use of DNN’s for RL enables the learning of policies by ob-
serving raw data, for example, raw pixel values for video games and
joint/actuator angles in robots.

e Deep RL is generally model-free, that is, it only assumes that the
environment can be modeled as a Markov Decision Process (MDP)
and does not assume any knowledge about the internals of the MDP.

Challenges with Deep RL

e Poorly designed reward functions can lead to the synthesis of a pol-
icy that performs unsafe actions, even if it learns to maximize the
rewards.

e In the case of safety-critical systems (most Cyber-Physical Systems),
this can be the difference between life and death.

Formal Methods

e Meanwhile, research on safety and verification of cyber-physical sys-
tems (CPS) has extensively used Temporal Logics to define safety
specifications on the system.

e The quantitative semantics, like that for Signal Temporal Logic
(STL), allow us to detect how robustly a signal satisfies a given prop-
erty, that is, we can calculate how robust a signal is to perturbation
against a given STL formula [1].

e Works like [2] and [3] propose the usage of Temporal Logics to de-
sign robust reinforcement learning controllers.
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PARTIAL SIGNAL ROBUSTNESS

— We propose a method to define locally shaped reward functions from
STL specications defined on the trajectory of the system.

— The proposed technique provides a framework by which reward
functions can be specified in an expressive manner using STL for-
mulas.

— This methods does not depend on the design of the RL algorithm,
and can be generalized out-of-the-box.

Definition (Partial Signal). Given a trajectory of a system X, a partial
signal, x[i : j], is defined by the slice of the trajectory from the 7"
sample to the jth sample. That is,

X[z’:j]:(si,...,sj)

Definition (Robust Satisfaction Function). The robust satisfaction func-
tion is a function p that maps a STL property ¢, a partial signal x|. . .|,
and a sample step n € N to a real number in R C R.

Thus, the reward for state s; can be written as

ri = ple, X[ : 7], 1) (1)

where, 7 1s the length of the partial signal and ¢ 1s the STL specification
defined on the system.
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We trained a Double Deep Q-Network (DDQN) agent using the pro-
posed framework, using the normalized filtering semantics [4] for
STL. The DDQN policy observes the displacement of the cart from the
center, the angle of the pole, and their respective velocities, and outputs
a push to the left or right (bang-bang controller).
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e The policy trained using the proposed method keeps the cart upright
for a longer duration and accumulates a larger total episodic reward
than the vanilla agent.

e Thus, the traditional reward function used to train policies for the
Cart-Pole problem tend make the final policy to perform worse than
the new reward function.

FUTURE WORK

e While this approach works well for many cases, 1t doesn’t guarantee
convergence too a good policy when the system 1f very complex, like
in the case of quadrotor dynamics, for example.

e The performance does not necessarily scale with the size of the STL
formula, due to the discrete nature of the min and max operators in
the quantitative semantics of STL. This can trivially be addressed
using smoothened versions of the operators, or a more probabilistic
approach can be used to combine the sub-formulas.
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