
Structured Reward Shaping using
Signal Temporal Logic specifications

Anand Balakrishnan, Jyotirmoy V. Deshmukh

Abstract—Deep reinforcement learning has become a popular
technique to train autonomous agents to learn control policies
that enable them to accomplish complex tasks in uncertain envi-
ronments. A key component of an RL algorithm is the definition
of a reward function that maps each state and an action that
can be taken in that state to some real-valued reward. Typically,
reward functions informally capture an implicit (albeit vague)
specification on the desired behavior of the agent. In this paper,
we propose the use of the logical formalism of Signal Temporal
Logic (STL) as a formal specification for the desired behaviors of
the agent. Furthermore, we propose algorithms to locally shape
rewards in each state with the goal of satisfying the high-level
STL specification. We demonstrate our technique on two case
studies, a cart-pole balancing problem with a discrete action
space, and controlling the actuation of a simulated quadrotor
for point-to-point movement.

The proposed framework is agnostic to any specific RL
algorithm, as locally shaped rewards can be easily used in
concert with any deep RL algorithm.

I. INTRODUCTION

Reinforcement learning (RL) combined with deep learning
has been incredibly successful in solving highly complex
problems in domains with well-defined reward functions, like
maximizing Atari games’ high scores [1] and complex cyber-
physical problems such as learning gait in simulated bi-pedal
robots [2]. To a large extent, this success can be attributed
to the ability of deep neural networks to approximate highly
non-linear functions that take raw data, like pixel data in [1]
and proprioceptive sensor data in [2], as input and output the
expected total reward from performing a given action at a
specific state.

An important problem to address when designing and
training reinforcement learning agents is the design of reward
functions [3]. Reward functions are a means to incorporate
knowledge of the goal and the environment model in the
training of an RL agent, using hand-crafted and fine-tuned
functions of the current state of the system. Thus, poorly
designed reward functions can lead to the reinforcement
learning algorithm learning a policy that doesn’t exactly
accomplish the task that the agent was supposed to learn
to complete, as shown in [4]. Moreover, in safety critical
systems, the agent can learn a policy that performs unsafe
or unrealistic actions, even though it maximizes the expected
total reward [4].

The problem of an RL agent learning to maximize the total
reward by exploiting the reward function, and thus perform-
ing unwanted or unsafe behavior is called reward hacking [5]

* Cyber-Physical Systems: Verification, Intelligence, Design and Anal-
ysis (CPS-VIDA) Group, University of Southern California, Los Angeles,
California. Email: {anandbal, jdeshmuk}@usc.edu

and the study of minimizing reward hacking by designing
better reward functions is called reward shaping [6].

Meanwhile, research on safety and verification of cyber-
physical systems (CPS) has extensively used logical for-
malisms based on Temporal Logics to define safety spec-
ifications. In particular, Signal Temporal Logic (STL) has
seen considerable use to define temporal properties of signals
in various cyber-physical system applications [7]–[9]. More-
over, there has been work to furnish STL with quantitative
semantics, which allow us to quantify how robustly a signal
satisfies a given property. The robustness of a signal with
respect to an STL formula can be viewed as the distance
of the signal to the set of signals satisfying the given
formula [10], [11].

Seminal work in [12] explores the idea of using the robust
satisfaction semantics of STL to define reward functions
for a reinforcement learning procedure. Similar ideas were
extended by to a related logic for RL-based control design
for Markov Decision Processes (MDP) in [13]. In this paper,
we identify certain shortcomings of the previous approaches;
in particular, we observe that using reward functions based on
traditional definitions of robustness are global, i.e. a positive
(resp. negative) robustness value translates into a positive
(resp. negative) reward that influences all states encountered
during a learning episode equally. To address this issue, we
adapt the quantitative semantics of STL to be defined over
partial signal traces. A partial signal trace is a bounded-
length segment of the state trajectory of the system being
controlled by the RL agent, allowing us to define locally
shaped reward functions over this partial signal trace. The
learning step in the RL agent is then performed in a delayed
manner by observing the temporal behavior (over a bounded
window) and evaluating the behavior vis-à-vis the given STL
formula.

The ultimate objective of this work is to provide a frame-
work for a flexible structured reward function formulation.
In this paper, we formulate structured and locally shaped
rewards in an expressive manner using STL formulas. We
show how locally shaped rewards can be used by any deep
RL architecture, and demonstrate the efficacy of our approach
through two case studies.

II. RELATED WORK

Reward shaping has been addressed in previous work
primarily using ideas like inverse reinforcement learning
[14], potential-based reward shaping [15], or combinations
of the above [16]. Inverse RL, like in [14] involves learning
reward functions that best describe a system, typically from

several ranked demonstrations, addressing the problem of
reward shaping rather than reward maximization. Such an ap-
proach typically requires processing several demonstrations
and can also result in uninterpretable reward functions that
are complex non-linear functions. Similarly, using potential-
based reward functions allows us to scale rewards by some
potential function which can either be hand-crafted or learned
using inverse RL, like in [16]. These methods come with
a guarantee of invariance from the original reward function
while enabling faster convergence to an optimal policy, but
come with the same problems as traditional reward functions,
that is, the lack of expressiveness and ability to capture
complex behavior in a well-structured manner. In contrast to
potential-based reward functions, where a potential function
is used to alter rewards provided by the environment, the
method presented in this paper tackles the issue of design of
the reward function in a well-structured manner.

To address some of the shortcomings of classical RL,
especially regarding the learning of safe policies (or con-
trollers), lot of work has been done in using control theoretic
techniques in training and verifying reinforcement learning
models.

Temporal logics have been used extensively in the context
of cyber-physical systems to encode temporal dependencies
in the state of a system in an expressive manner [7]. Thus,
high-level temporal logics like LTL have been used to de-
sign highly scalable planning algorithms like in [17], where
high-level LTL specifications have been used to synthesize
decentralized controllers for swarms. In addition to having
boolean satisfaction semantics, temporal logics like Signal
Temporal Logic (STL) [11] have various proposed quantita-
tive semantics [18]–[23], that establish a robust satisfaction
value (or robustness) to quantify how well a trace satisfies
a formula. The work in [12] proposes a method to interpret
the environment MDP as a temporal abstraction, and thus use
the robustness of a trajectory with respect to an STL formula
as the reward function for Q-learning. This was further
modified in [13] to perform reinforcement learning over
Markov Decision Processes for a closely related temporal
logic.

In many safety-critical systems, we are interested in acting
upon or optimizing behavior in low-level components in a
system, thus making STL a better candidate than LTL to
specify requirements in, as demonstrated in [7]. The altered
Q-learning formulation presented in [12] uses STL robust-
ness of a temporal-MDP transition to compute the reward.
But generating this temporal-MDP requires enumeration of
possible future states, thus making the size of the state
space exponentially proportional to the horizon of the STL
specification. In the work presented in [13], the robustness
of a trajectory generated by an RL agent is computed after
the episode completed, similar to Monte Carlo methods in
RL, thus has similar disadvantages to Monte Carlo methods
[3].

In this paper, we introduce a method to define well-
structured reward functions using STL properties. The pre-
sented technique extends previous work on reinforcement
learning with temporal logic rewards in two significant
directions: (1) we allow STL formulas with (potentially)

unbounded time horizons, and (2) we can dynamically alter
rewards during a training episode, which gives us signif-
icantly better performance and convergence rates in the
training procedure. While we elaborate on the key steps of
our technique in the subsequent sections, we now introduce
the key concepts required for these extensions.

III. PRELIMINARIES

A. Reinforcement Learning (RL)

Definition 1 (Markov Decision Process (MDP)). It is a tuple
M = (S,A,T,R,γ) where
• S is the state space of the system;
• A is the set of actions that can be performed on the system;
• T is the transition function, where T (s,a,s′) = P(s′ | s,a);
• R is a reward function that typically maps either some

s ∈ S or some transition δ ∈ S×A×S to R;
• γ is the discount factor for the MDP.

In RL, the goal of the learning algorithm is to converge
on a policy π : S→ A that maximizes the total (discounted)
reward from performing actions on a MDP, i.e., the objective
is to maximize max∑

∞
t=0 γ trt , where rt is the output of the

reward function R for the sample at t.
Q-learning [24] is a classic RL algorithm that uses value

iteration to train an optimal policy. In Q-learning, we define
a function Q : S×A→ R as

Q(st ,at) = E

[
∞

∑
τ=0

γ
τ rt+τ

∣∣∣∣∣st ,at

]
and pick action a from a policy π(s) = maxa Q(st ,at). Thus
the optimal policy π∗ is the policy that uses the optimal Q-
function, Q∗ that correctly estimates the expected total reward
from an MDP state, using value iteration.

B. Signal Temporal Logic

Definition 2 (Discrete-Time Signals). Let T= {t0, t1, . . .} be
a finite or infinite set of time-points, where ∀i, ti ∈ R≥0. For
a compact set D , a discrete-time signal x is a function from
T to D . In this paper, we restrict our attention to sets D that
are compact subsets of Rm for some positive integer m.

Signal Temporal Logic (STL) is a real-time logic, typically
interpreted over a dense-time domain for signals that take
values in a continuous metric space (such as Rm). The basic
primitive in STL is a signal predicate µ that is a formula of
the form f (x(t))> 0, where x(t) is the value of the signal x
at time t, and f is a function from the signal domain D to
R. STL formulas are then defined recursively using Boolean
combinations of sub-formulas, or by applying an interval-
restricted temporal operator to a sub-formula. The syntax of
STL is formally defined as follows:

ϕ ::= µ | ¬ϕ | ϕ ∧ϕ |GIϕ | FIϕ | ϕUIϕ | (1)

Here, I = [a,b] denotes an arbitrary time-interval, where
a,b∈R≥0. The semantics of STL are defined over a discrete-
time signal x defined over some time-domain T. The Boolean
satisfaction of the primitive is simply > if the predicate
is satisfied and ⊥ if it is not, and the semantics for the
propositional logic operators ¬,∧ (and thus ∨,→) follow

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0

−0.5

0.0

0.5

1.0

Fig. 1. Properties on a sin wave.

the obvious logical semantics. The temporal operators, thus,
model the following behavior:
• GI(ϕ) says that ϕ must hold for all samples in I.
• FI(ϕ) says that ϕ must hold at least once for samples in

I.
• ϕUIψ says that ϕ must hold in I until ψ holds.

Example 1. Consider the signal x(t) obtained by sampling
the function sin(2πt) at times t0, t1, . . ., where t j = j×0.125
(shown in Fig. 1). Consider the formula G(x(t)≥−1), which
requires that starting at time 0, x(t) is always greater than−1
(at each sample point). Consider the formula F(G[0,1](x(t)≥
0)). This formula requires that there is some time (say τ) such
that between times [τ,τ +1], x(τ) is always greater than 0.
Considering that x(t) is a sampling of a sinusoid with period
1, this formula is also satisfied by x(t).

In addition to the Boolean satisfaction semantics for STL,
various researchers have proposed quantitative semantics for
STL, [11], [19]–[23] that compute the degree of satisfaction
(or robust satisfaction values) of STL properties by traces
generated by a system. These semantics can be presented in
the following general form:

Definition 3 (Quantitative Semantics for Signal Temporal
Logic). Given an algebraic structure (⊕,⊗,>,⊥), we define
the quantitative semantics for an arbirtary signal x against
an STL formula ϕ at time t as follows:

ϕ ρ (ϕ,x, t)
true/false >/⊥

µ f (x(t))
¬ϕ −ρ (ϕ,x, t)

ϕ1∧ϕ2 ⊗(ρ (ϕ1,x, t) ,ρ (ϕ2,x, t))
ϕ1∨ϕ2 ⊕(ρ (ϕ1,x, t) ,ρ (ϕ2,x, t))
GI(ϕ) ⊗τ∈t+I(ρ (ϕ,x,τ))
FI(ϕ) ⊕τ∈t+I(ρ (ϕ,x,τ))
ϕUIψ ⊕τ1∈t+I(⊗(ρ (ψ,x,τ1) ,⊗τ2∈[t,τ1)(ρ (ϕ,x,τ2)))

The above definition is quite abstract: it does not give
specific interpretations to the elements >,⊥ or the operators
⊗ and ⊕. In the original definitions of robust satisfaction
proposed in [11], [18], the interpretation was to set >=+∞,
⊥=−∞, and ⊕= max, and ⊗= min. This algebraic charac-
terization of quantitative robustness, extended from the work
proposed in [21] is actually quite general, and allows us to
explore different interpretations for the ⊥,> elements and
the ⊕ and ⊗ operators.

IV. PARTIAL SIGNAL REWARDING

Definition 4 (Partial Signal). Given a trajectory of a system
x, a partial signal, x[i : j], is defined by the slice of the
trajectory from the ith sample to the jth sample. That is,

x[i : j] = (si, . . . ,s j)

We define the robust satisfaction values computed for each
sample in the partial signal as the bounded horizon nominal
robustness (BHNR) (denoted ρ̃), so as to not confuse it with
the standard definition of robustness. The BNHR values differ
from the actual robustness value as the true robust satisfaction
value is computed over the entire signal, whereas the BHNR
is computed over a partial signal trace, thereby not taking into
account samples present outside the slice of the trajectory of
the system.

Definition 5 (Bounded Horizon Nominal Robustness
(BHNR) values). For formulas of the type ψ = Gϕ or
ψ = Fϕ (i.e. with an unbounded outer temporal operator),
we define the bounded horizon nominal robustness to be an
array of localized robust satisfaction values for all sample
time steps t ∈ i . . . j of a partial signal x[i : j].

ρ̃ (ψ,x[i : j], t) [t] = ρ (ϕ,x[t : j], t) ,∀t ∈ i . . . j (2)

Remark. The above definition makes sense only when used
in the context of signals of the type ψ = Fϕ or ψ = Gϕ

as the reward function must hold at every time step in the
training process and not within a finite time slice.

By computing the BHNR values of a partial signal, we can
compute a reward for each state in the partial signal trace,
where the reward encodes information about decisions taken
in the future states in an expressive manner. Thus, the reward
vector can be computed by using the following formula:

rt = ρ̃ (ϕ,x[i : i+ τp], t) , ∀t ∈ [i, i+ τp] (3)

where, i is the first sample time step in the partial signal, τp is
the length of the partial signal and ϕ is the STL specification
defined on the system.

We can see that the reward function defined above is
locally shaped: within a slice of the trajectory of the system,
we can define how robust the actions taken by the RL
agent are. This is very similar to how N-step learning
methods approximate the value function of the current state
by performing an N-step simulation, as opposed to computing
the true value function using Monte Carlo method [3]: the
benefits that BHNR robustness provides to shaping rewards
provides a local approximation of the robustness and helps
in approximating the “gradient” of the robustness for future
actions, thus enabling faster learning. It should be noted
that the robustness signal of the true trajectory may not be
continuous, and hence a gradient may not exist, but it is more
likely to exist in a localized slice of the signal.

V. EXPERIMENTAL RESULTS

To evaluate the new framework, we run experiments that
compare the performance between a RL agent that is re-
warded using a traditionally defined reward function, and
another RL agent rewarded with a the bounded horizon

nominal robustness ρ̃ defined in (3). These RL agents are
trained with the same learning algorithm and hyper parame-
ters, and are hence identical. The experiments were chosen
to demonstrate the generality with which we can apply this
rewarding framework to different RL algorithms, especially
in the context of deep RL. Specifically, we choose the
following two tasks:

1) Cart-Pole problem [25]: In this classic control environ-
ment, we train two double deep Q-network (Double DQN)
agents to learn to maximize the amount of time a pole is
balanced on a cart. This experiment is simulated in the
OpenAI Gym reinforcement learning environment [26].

2) Quadrotor Position Control [27]: Here, we simulate a
quadrotor and train a deep RL agent to perform attitude
control for the quadrotor and reach a goal position. In our
experiments, we use the PPO algorithm to train the agent.
We also perform each experiment multiple times with dif-

ferent random seeds, and average the training data across the
multiple trials with error computed using a 95% confidence
interval.

A. Case 1: Cart-Pole Problem
This environment is the classical cart-pole balancing prob-

lem described in [25], where a cart is controlled with a simple
bang-bang controller that pushes it left or right, and the goal
is to balance a pole on the cart for as long as possible. This
environment is very useful to demonstrate the effectiveness
of various algorithms due to is simplicity, as a good controller
can be learned from using algorithms like tableau Q-learning
and traditional actor-critic methods.

In this problem, the state space of the environment is
〈x, ẋ,θ , θ̇〉, where x is the displacement of the cart from the
origin and θ is the angle by which the pole is displaced
from the upright position. Moreover, the reward function is
traditionally defined as follows:

rt =

{
1 if θ ∈ ±12◦∧ x ∈ ±2 units

−10 otherwise
(4)

This essentially rewards the controller for every time step
that the cart is balanced and punished it if the pole falls of
the cart or the cart is “driven off the table”. The −10 in the
other case can also be replaced by either 0 or some large
negative number, to act as negative reinforcement for the RL
agent.

Using this reward function, several algorithms can be used
too train a policy that maximizes the total reward. But, the
controller game the reward function by having a |ẋ| <= δ

until the end of the episode, where δ is some small positive
value. This essentially introduces a drift in the control system
that the learned policy cannot learn to compensate for using
the current reward function. While an argument can be made
that the reward function can have stricter constraints, doing
so causes the agent to have too few positively rewarded states,
causing an increase in the duration that the agent has to be
trained.

In our reformulated reward function, we use the following
STL formula to monitor the BNHR of the partial signal traces
generated by the environment:

ϕ = G
(

F(|ẋ|< 0.01)∧ (|θ |< 2◦)∧ (|x|< 0.5)
)

(5)

Training Iterations
0

100

200

300

400

500

A
vg

.E
pi

so
de

D
ur

at
io

n
0 200 400 600 800 1000

Training Iterations

0

100

200

300

400

500

A
vg

.E
pi

so
de

R
ew

ar
d

Vanilla Rewards STL Rewards

Fig. 2. Double DQN training data for cart-pole problem

The above equation is essentially incorporates a stricter
version of the reward function defined in (4), but also
incorporates the G and F temporal operators, thus describing
the following behavior:

For the entirety of the duration of operation, the
pole must be constrained to a ±2◦ angle and the
cart must not be moved more than 0.5 units. The
cart must also eventually have a velocity with
magnitude less than 0.01.

The use of the temporal operators allows us to define
a behavior that we want our policy to converge upon as
opposed to follow it instantaneously. The reason the temporal
constraint is added to the velocity of the cart is because,
typically, when training an RL agent to “solve” the cart-pole
environment, the final policy results in a drifting behaviour.
This is because the agent essentially has to learn to keep that
cart within bounds for a sufficient amount of time, as the
episode is set to terminate after a fixed number of steps. This
is an example of “reward hacking”, as gradual drift can be
considered unsafe in the context of cyber-physical systems.

Moreover, we use the the quantitative semantics defined
in [21] where the quantitative semantics are defined over
the algebraic structure (+,×,1,0), effectively bounding the
robustness values in [0,1], i.e. providing a normalized ro-
bustness value. For further information on how the filter
semantics of STL works, refer to [21].

In our experiments, we used a Double DQN learning
algorithm [28], where the neural network is defined to be
a fully-connected, multi-layer perceptron with the ReLU
activation function. The hyper-parameters for the training are

TABLE I
DOUBLE DQN HYPER-PARAMETERS

Discount factor 0.95
Learning Rate 0.001
Uniform Sample Memory Size 2000
Target Update 15
Partial Signal Length 15

TABLE II
PPO HYPER-PARAMETERS

Discount factor 0.95
Learning Rate 0.001
Value Loss, Entropy Coefficients 0.5, 0.01
Max. gradient norm 0.5
Number of workers 4
Rollout length 100
Mini-batch Size 32
Clipping parameter ±0.2
BHNR Partial Signal Length 100

described in the TABLE I, including the length of the partial
signal buffer. The training results can be seen in Fig. 2

In Fig. 2, we can see that the BHNR rewarded agent learns
a policy that outperforms the vanilla agent very early on in
the training by increasing the duration for which the pole
is balanced (max of 500 time-steps), while continuing to
maximize the total expected reward.

B. Case 2: Quadrotor Position Control
For this environment, simulate a quadrotor environment in

which the goal is to control the drone by directly sending
commands to the actuators (propellers) on the drone and get
it from its position to a randomly generated goal point. The
controller and the simulation operate at a frequency of 200
Hz, thus each step in the simulation is 5 milliseconds long.
This is a combination of the environment described in [27]
and the OpenAI Roboschool environment, RoboschoolHu-
manoidFlagrun.1

The state space in this problem is the vector(
x,θ , ẋ, θ̇ ,g,collision

)
, where x is the position of the

quadrotor in Cartesian space, θ is the Euler angle
orientation of the quadrotor, g is the position of the goal
point, and collision is a Boolean flag associated with the
collision state of the drone, thus |S| = 16. As mentioned
earlier, the action space of the environment is the direct
actuation of the motors of the quadrotor, thus |A|= 4.

We train two RL agents using PPO [29], and similar to
Sec.V-A, we reward one with a vanilla reward function and
the other with the BHNR-based reward function. The list of
hyper-parameters for the training can be seen in TABLE II.

For the vanilla rewards, we use the reward function defined
in [27], that is:

rt =−
(
4e−3‖xt −gt‖+2e−4‖θt‖+3e−4

∥∥θ̇t
∥∥+5e−4‖ẋt‖

)
(6)

The reward function described in (6) essentially gives the
RL agent a higher reward when the agent is closer to the
goal position and with an extra incentive for the agent for
being closer to hovering while minimizing drift. But, it can

1https://gym.openai.com/envs/RoboschoolHumanoidFlagrun-v1/

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
.D

is
co

un
te

d
R

ew
ar

ds

Vanilla Rewards STL Rewards

Fig. 3. PPO training data for quadrotor position control

also be seen that (6) was also hand-engineered and fine-tuned
for the coefficients for the error terms, hinting at extensive
experimentation by the authors in [27] to decide upon these
terms.

We show that computing the locally shaped rewards from
the BHNR signal of the trajectory of the simulation works
just as well as the reward function described in (6) if we use
the following property:

ϕ = G
(
F[0,5](‖xt −gt‖ ≤ 0.05)∧ (

∥∥θ̇t
∥∥≤ 5◦/s)

)
(7)

This property specifies the following behavior:
The drone must get within 5cm of the goal within 5
seconds, while the angular velocity is always within
±5◦/s.

We can argue that (7) is a combination of a goal specifica-
tion and a safety specification, where the angular constraints
are the safety specifications and the expression depending
on position error is the goal specification. We monitor the
trajectory using the classical quantitative semantics of STL
defined in [30]. It should be noted that if the quadrotor
reaches the position within 5 seconds and hovers, the reward
it obtains will be positive, but if it fails to satisfy the property,
the rewards will be large and negative.

In Fig. 3, we see similar results as in Fig. 2: the BHNR-
rewarded agent learns faster and achieves a higher normalized
reward than the vanilla agent. This shows that an intuitive,
structured reward function defined using STL properties per-
forms much better than a hand-engineered reward function.

Remark. The results are presented in a normalized fashion
as the scale of the two reward functions are significantly
different. In (6), we see that reward function has a maximum
value of 0, but the reward itself is very small. Meanwhile, the
robust satisfaction value against (7) can have a max of ≈ 0
(like in the vanilla reward function) but the reward values
have relatively large magnitude.

VI. CONCLUSION

In this work, we presented a framework for designing lo-
cally shaped reward functions by defining STL specifications

that models the desired behavior of the system being con-
trolled by a (deep) RL controller. We do this by introducing
the notion of bounded horizon nominal robustness of a partial
signal trace of a system, with respect to a STL property,
and demonstrate the potential of using temporal logic as a
means to train deep RL controllers using two examples, a
cart-pole example and a quadrotor control example. While
defining logical specifications for RL tasks is useful, using
quantitative semantics for temporal logics in training RL
agents has one drawback: if different state variables operate
on different scales, they contribute disproportionately to the
robustness computation. This can cause training to become
erratic when there are multiple sub-formulas on the different
state variables. In future work, we would like to extend the
use of temporal logics in training RL agents to accomplish
multiple goals, and also study its use in defining hierarchical
learning models.

ACKNOWLEDGMENT

This work was funded in part by a grant from Toyota
Motors North America R&D. Computation was supported
by the University of Southern California’s Center for High-
Performance Computing (hpc.usc.edu).

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” arXiv:1509.02971 [cs, stat], Sept. 2015.
[Online]. Available: http://arxiv.org/abs/1509.02971

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed., ser. Adaptive Computation and Machine Learning Series.
Cambridge, MA: The MIT Press, 2018.

[4] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq,
L. Orseau, and S. Legg, “AI Safety Gridworlds,” arXiv:1711.09883
[cs], Nov. 2017. [Online]. Available: http://arxiv.org/abs/1711.09883

[5] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete Problems in AI Safety,” arXiv:1606.06565 [cs],
June 2016. [Online]. Available: http://arxiv.org/abs/1606.06565

[6] M. Grześ, “Reward Shaping in Episodic Reinforcement Learning,”
in Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, ser. AAMAS ’17. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2017, pp. 565–573. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3091125.3091208

[7] A. Donzé, X. Jin, J. V. Deshmukh, and S. A. Seshia, “Automotive
systems requirement mining using breach,” in 2015 American Control
Conference (ACC), July 2015, pp. 4097–4097.

[8] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito,
T. Kaga, S. Kobuna, and S. Seshia, “ST-Lib: A Library for Specifying
and Classifying Model Behaviors,” SAE International, Warrendale, PA,
SAE Technical Paper 2016-01-0621, Apr. 2016.

[9] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Nǐcković, and S. Sankaranarayanan, “Specification-Based Moni-
toring of Cyber-Physical Systems: A Survey on Theory, Tools and
Applications,” in Lectures on Runtime Verification: Introductory and
Advanced Topics, E. Bartocci and Y. Falcone, Eds. Cham: Springer
International Publishing, 2018, pp. 135–175.

[10] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A.
Seshia, “Robust online monitoring of signal temporal logic,” Formal
Methods in System Design, vol. 51, no. 1, pp. 5–30, Aug. 2017.

[11] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[12] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-
Learning for robust satisfaction of signal temporal logic specifications,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec.
2016, pp. 6565–6570.

[13] X. Li, C. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), Sept. 2017, pp. 3834–3839.

[14] P. Abbeel and A. Y. Ng, “Apprenticeship Learning via Inverse Rein-
forcement Learning,” in Proceedings of the Twenty-First International
Conference on Machine Learning, ser. ICML ’04. New York, NY,
USA: ACM, 2004, pp. 1–.

[15] A. Y. Ng, D. Harada, and S. J. Russell, “Policy Invariance
Under Reward Transformations: Theory and Application to Reward
Shaping,” in Proceedings of the Sixteenth International Conference
on Machine Learning, ser. ICML ’99. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999, pp. 278–287. [Online].
Available: http://dl.acm.org/citation.cfm?id=645528.657613

[16] H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova, “Learning
from Demonstration for Shaping Through Inverse Reinforcement
Learning,” in Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, ser. AAMAS ’16.
Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2016, pp. 429–437. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2936924.2936988

[17] S. Moarref and H. Kress-Gazit, “Decentralized control of robotic
swarms from high-level temporal logic specifications,” in 2017 Inter-
national Symposium on Multi-Robot and Multi-Agent Systems (MRS),
Dec. 2017, pp. 17–23.

[18] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[19] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, and D. Ničković, “Quan-
titative monitoring of STL with edit distance,” Formal Methods in
System Design, vol. 53, no. 1, pp. 83–112, Aug. 2018.

[20] Y. V. P. Houssam Abbas and R. Mangharam, “Temporal Logic Robust-
ness for General Signal Classes,” in To Appear in the Proc. of Hybrid
Systems: Computation and Control, 2019.

[21] A. Rodionova, E. Bartocci, D. Nickovic, and R. Grosu, “Temporal
Logic as Filtering,” Proceedings of the 19th International Conference
on Hybrid Systems: Computation and Control - HSCC ’16, pp. 11–20,
2016.

[22] T. Akazaki and I. Hasuo, “Time Robustness in MTL and Expressivity
in Hybrid System Falsification,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, D. Kroening and C. S. Păsăreanu,
Eds. Springer International Publishing, 2015, pp. 356–374.

[23] S. Silvetti, L. Nenzi, E. Bartocci, and L. Bortolussi, “Signal Convo-
lution Logic,” in Automated Technology for Verification and Analysis,
ser. Lecture Notes in Computer Science, S. K. Lahiri and C. Wang,
Eds. Springer International Publishing, 2018, pp. 267–283.

[24] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, King’s College, Cambridge, 1989.

[25] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, Sept. 1983.

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[27] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[28] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement
Learning with Double Q-learning,” arXiv:1509.06461 [cs], Sept.
2015. [Online]. Available: http://arxiv.org/abs/1509.06461

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv:1707.06347 [cs],
July 2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[30] A. Donzé, T. Ferrère, and O. Maler, “Efficient Robust Monitoring for
STL,” in Computer Aided Verification, ser. Lecture Notes in Computer
Science, N. Sharygina and H. Veith, Eds. Springer Berlin Heidelberg,
2013, pp. 264–279.

