Anand Balakrishnan

🛛 anandbal [at] usc [dot] edu 🗞 anandb.dev 🗘 github.com/anand-bala

Education	
Ph.D. Computer Science Iniversity of Southern California Advisor: Jyotirmoy V. Deshmukh	all 2018 — Summer 2025 (expected)
Thesis Title: From Qualitative to Quantitative Objectives for Neurosymboli	ic Control
B.S. Computer Engineering	May 2018
University at Buffalo	
Distinction: Magna Cum Laude	
Work Experience	
• Research Assistant	Aug 2018 — Ongoing
CPS-VIDA Group, University of Southern California	
Advisor: Jyotirmoy V. Deshmukh	
• Teaching Assistant	Fall 2023
CSCI 699: Mathematical Foundation to Intelligent Autonomy	
Course Instructor: Lars Lindemann	
• Technical Intern	Summer 2023
Siemens Corporation	
• Teaching Assistant	Fall 2021
CSCI 513: Autonomous Cyber-Physical Systems	
Course Instructor: Jyotirmoy V. Deshmukh	
ADAS Software Engineering Intern	Summer 2021
INDI EV, Inc.	
• Research Intern	Summer 2020
Toyota Research Institute, North America	
• Graduate Mentor	Summer 2019
SURE Program: Summer Undergraduate Research Experience	
Undergraduate Researcher	Feb 2016 — May 2018
Distributed Robotics and Networked Embedded Systems Lab, University	y at Buffalo
Advisor: Karthik Dantu	
Undergraduate Teaching Assistant	Fall 2017
CSE 331: Algorithm Analysis and Design, University at Buffalo	
Course Instructor: Atri Rudra	
Mentoring	

- Mentoring
- Interns: Parv Kapoor
- Master's Students: Rohit Bernard, Shreeram Narayanan, Yogesh Gajjar
- Undergraduate Students: Monali Saraf, Kolby Nottingham

Journals and Conferences

- 1. A. Balakrishnan, S. Paul, S. Silvetti, L. Nenzi, and J. V. Deshmukh. 2025. Monitoring Spatially Distributed Cyber-Physical Systems with Alternating Finite Automata. In 29nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC). (May 2025). Accepted.
- 2. A. Balakrishnan, M. Atasever, and J. V. Deshmukh. 2024. Motion Planning for Automata-based Objectives using Efficient Gradient-based Methods. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (Oct. 2024), 13734–13740. DOI: 10.1109/IR0S58592.2024.10802177.
- S. Paul, A. Balakrishnan, X. Qin, and J. V. Deshmukh. 2024. Multi-agent Path Finding for Timed Tasks Using Evolutionary Games. In *Quantitative Evaluation of Systems and Formal Modeling and Analysis of Timed Systems* (QEST+FORMATS). Vol. 14996. J. Hillston, S. Soudjani, and M. Waga, editors. Springer Nature Switzerland, Cham, (Aug. 2024), 302–321. DOI: 10.1007/978-3-031-68416-6_18.
- 4. A. Balakrishnan, S. Jakšić, E. A. Aguilar, D. Ničković, and J. V. Deshmukh. 2023. Model-Free Reinforcement Learning for Spatiotemporal Tasks Using Symbolic Automata. In 2023 62nd IEEE Conference on Decision and Control (CDC). (Dec. 2023), 6834–6840. DOI: 10.1109/CDC49753.2023.10383559.
- S. Mallick, S. Ghosal, A. Balakrishnan, and J. Deshmukh. 2023. Safety Monitoring for Pedestrian Detection in Adverse Conditions. In *Runtime Verification*. Lecture Notes in Computer Science. Vol. 14245. P. Katsaros and L. Nenzi, editors. Springer Nature Switzerland, Cham, (Oct. 2023), 389–399. DOI: 10.1007/978-3-031-442 67-4_22.
- A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, and G. Fainekos. 2021. PerceMon: Online Monitoring for Perception Systems. In *Runtime Verification* (Lecture Notes in Computer Science). L. Feng and D. Fisman, editors. Springer International Publishing, Cham, (Oct. 2021), 297–308. DOI: 10.1007/978-3-030-88494-9 _18.
- 7. Z. S. Hashemifar, C. Adhivarahan, A. Balakrishnan, and K. Dantu. 2019. Augmenting visual SLAM with Wi-Fi sensing for indoor applications. *Autonomous Robots*, 43, 8, (Dec. 2019), 2245–2260. DOI: 10.1007/s10 514-019-09874-z.
- 8. A. Balakrishnan and J. V. Deshmukh. 2019. Structured Reward Shaping using Signal Temporal Logic specifications. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (Nov. 2019), 3481–3486. DOI: 10.1109/IROS40897.2019.8968254.
- 9. A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh, H. Ben Amor, and G. Fainekos. 2019. Specifying and Evaluating Quality Metrics for Vision-based Perception Systems. In 2019 Design, Automation Test in Europe Conference Exhibition (DATE). (Mar. 2019), 1433–1438. DOI: 10.23919/DATE.2019.8715114.

Presentations

- A. Balakrishnan, R. Bernard, S. Narayanan, V. Kudalkar, Y. Zhao, P. Nagaraja, G. Markov, C. Budnik, H. Degen, L. Lindemann, and J. V. Deshmukh. 2024. Safety Assurance for Autonomous Systems with Multiple Sensor Modalities. In 2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE). (Oct. 2024), 108–113. DOI: 10.1109/MEM0C0DE63347.2024.00018.
- 2. A. Balakrishnan and J. V. Deshmukh. 2024. Differentiable Weighted Automata. In ICML 2024 Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators. (June 2024). https://openreview.net/forum?id=k2hIQYqHTh.
- 3. A. Balakrishnan, S. Jaksic, E. Aguilar, D. Nickovic, and J. Deshmukh. 2022. Poster Abstract: Model-Free Reinforcement Learning for Symbolic Automata-encoded Objectives. In 25th ACM International Conference

on Hybrid Systems: Computation and Control (HSCC). Association for Computing Machinery, New York, NY, USA, (May 2022), 1–2. DOI: 10.1145/3501710.3524734.

- 4. A. Balakrishnan and J. V. Deshmukh. 2019. Structured reward functions using STL: Poster abstract. In 22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC). Association for Computing Machinery, New York, NY, USA, (Apr. 2019), 270–271. DOI: 10.1145/3302504.3313355.
- 5. A. Balakrishnan, P. Behara, Z. Hashemifar, and K. Dantu. 2017. Poster: Dataset for Experimental Validation of Wi-Fi Sensing. In 6th Annual Northeastern Robotics Colloquium (NERC). Boston, MA, USA, (Oct. 2017).

Preprints

- 1. P. Kapoor, A. Balakrishnan, and J. V. Deshmukh. Model-based Reinforcement Learning from Signal Temporal Logic Specifications. (Nov. 2020). arXiv: 2011.04950 [cs, eess].
- 2. K. Nottingham, A. Balakrishnan, J. Deshmukh, C. Christopherson, and D. Wingate. Using Logical Specifications of Objectives in Multi-Objective Reinforcement Learning. (Oct. 2019). arXiv: 1910.01723 [cs, stat].

Volunteering and Services

Reviewer	IEEE Transactions on Robotics (T-RO)	
	IEEE Robotics and Automation Letters (RA-L)	
	ACM Transactions on Cyber-Physical Systems (TCPS)	
	Learning for Dynamics and Control Conference (L4DC)	2025
	IEEE International Conference on Robotics and Automation (IRCA)	2025
	IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)	2024
	International Conference on Concurrency Theory (CONCUR)	2024
	ACM International Conference on Hybrid Systems: Computation and Control (HSCC)	2024
	International Conference on Verification, Model Checking, and Abstract Interpretation	2024
	(VMCAI)	
	International Conference on Runtime Verification (RV)	2023
	IEEE Conference on Decision and Control (CDC)	2022
	IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)	2022
	IEEE International Conference on Robotics and Automation (ICRA)	2022
	IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)	2021
	Design Automation Conference (DAC)	2021
	IEEE Conference on Decision and Control (CDC)	2020
	IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)	2020
	ACM International Conference on Hybrid Systems: Computation and Control	2020
	Repeatability Evaluation (HSCC-RE)	
	ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS)	2019
Student	International Conference on Runtime Verification (RV)	2020
Organizer		

Honors and Awards

•	Selected as an NSF Cyber-Physical Systems (CPS) Rising Star (Awarded to 30 out of 174	2025
	applicants)	
		T 11 0047

University at Buffalo CURCA Undergraduate Grant for Multi-robot Systems Research
Fall 2017

Logical Specifications for Neurosymbolic Control

[IROS '19, CDC '23, ICML Diff. Almost Everything '24, IROS '24, HSCC '25]

- Investigate use of Formal Methods (including temporal logics and automata theory) in the training and validation of safe controllers for autonomous systems.
- Developed techniques to use Signal Temporal Logic formulas and weighted automata along with a choice of quantitative semantics to produce rewards for reinforcement learning agents.
- Developed frameworks to enable the use of automata in gradient-based optimization by constructing differentiable weighted automata.

Safety evaluation and monitoring of perception algorithms

[DATE '19, RV '21, RV '23, MEMOCODE '24]

- Develop monitoring algorithms for data streams that are generated by perception algorithms like object tracking and object detection.
- Developed a toolbox to specify logical specifications on perception algorithms and monitor their output when run on various datasets.
- Develop algorithm and tool to efficiently monitor perception algorithms at runtime.
- Develop logical consistency checkers for streams of data originating from multiple different sensor modalities, especially visual sensors.

Related Projects

Argus

• Using: Rust, Python

• A Rust library (with Python bindings) for efficiently working with Signal Temporal Logic (STL) and its quantitative semantics.

Automatix

- Using: Python, Jax
- A library for creating and manipulating symbolic automata.
- Defines monitors over algebraic semirings.
- Enables the use of differentiable (weighted) automata on GPUs using matrix operators and polynomials.

PerceMon

- Using: C++
- A tool for online monitoring of Spatio-Temporal Quality Logic specifications.
- The logic is used to generate monitors for topological entities in streams of perception data.

Probabilistic Timed Automata Library

- Using: Python
- Python library for building and simulating probabilistic timed automata.

Persephone

- Using: Matlab, C • A MATLAB toolbox to monitor data streams generated by perception systems.
- Uses Timed Quality Temporal Logic specifications to build monitors for perception algorithms, including object tracking, bounding box detection, etc.

[github.com/anand-bala/automatix]

[github.com/anand-bala/argus]

[github.com/anand-bala/PerceMon]

[github.com/anand-bala/probabilistic-timed-automata]

[github.com/cps-vida/Persephone]